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Abstract—The world economy is embracing the next generation
currency, i.e., cryptocurrencies, which dates back to 2009 when
Satoshi Nakamoto made Bitcoin publicly available. Rooted from
the nature of decentralization and anonymity of blockchain,
the cryptocurrencies have, unfortunately, been leveraged for
illicit activities by the criminals. The good news is that typical
cryptocurrencies, such as Bitcoin, have to publicly publish their
transactions, known as a graph, to retain their ultimate goal of
trustless and decentralized transaction verification, which lends
law enforcement a means to deanonymizing cryptocurrencies.
At meantime, graph learning is an extremely powerful tool to
extract the latent features of each vertex in a graph to fulfill
various tasks, such as, classifying graph vertices. In this work, we
discuss the promises and challenges of exploiting graph learning to
deanonymizing cryptocurrencies, which can aid the cyberfighters
to circumvent cryptocurrency-based illicit activities.

Cryptocurrencies [38] are the next generation currency that
has already started disrupting mainstream financial systems.
Such an emerging economy system, however, is well-suited
for illicit activities, mainly stemming from two facts. First,
the pseudonymous nature of the cryptocurrencies help hide the
criminal users from their real world identifications. Second, not
bounded by any international borders, as well as the lacking
of typical regulations [48] offers tempting convenience for
the criminals to conduct worldwide illegal transactions. As an
evidence, a number of such activities [43], [12], [14], [20] has
already been reported in Bitcoin and other cryptocurrencies.

The good news is typical cryptocurrencies are invented to
support transactions without the trusted third parties (i.e. bank)
and run in a decentralized manner, hence require to publicly
publish all transactions in a chain of blocks (also referred to
as blockchain). In this case, the cyberfighters can take this
publicly available data and try to deanonymize the criminals
through, mainly, the following four methods [18], such as,
direct interacting with the users [37], crawling third party
information [47], [4], customizing the Bitcoin client itself to
identify the neighbors in the peer-to-peer (P2P) network [11],
[29] or through analyzing of the transaction graphs [35], [44].

Given the former three attempts are either labor intensive
or blockchain user dependent, graph analysis [18], [31], [33],
[32], [30], [26], [19], [50], [25] become the most promising
mechanism to deanonymizing cryptocurrencies. Before dis-
cussing this approach, we briefly describe how to construct the
transaction graphs as follows. The publicly available hashes of
the transaction and addresses can be mapped into vertices and
edges with which several existing toolsets [18] can construct

an address-transaction bipartite graph.
Traditional graph-based approaches mainly fall into two

categories. First, shrinking the cryptocurrency address space
in order to facilitate an easier process of deanonymization.
Basically, Bitcoin and other cryptocurrencies (i.e., Altcoins)
allow a user to possess multiple addresses to receive the cur-
rency from a transaction. This increases the searching space of
identifying a real world user. To cope with this concern, various
kinds of heuristics [17], [35] have been used to merge multiple
addresses to the same user. For instance, the multi-input [35]
heuristics assumes the addresses that are used as input to
the transaction belong to the single user1.Second, clustering
unknown addresses to tagged ones for deanonymization [16].
Toward that end, existing work [18], [23], [36], [42], [24],
[6] exploits the following traditional graph features for vertex
classification.

1) Degree (i.e. in-degree or out-degree) of each vertex.
2) Currency amount accumulated in the address.
3) Holding time of the currency amount.
4) The series of active usage timestamps.
5) Influx and efflux of the currencies of an address.

For instance, an address with moderate degree but with very
high accumulation of Bitcoin is likely to be cold wallet address
of big organizations [18]. Further, [36] uses K-means clustering
detect fraudulent activities in Bitcoin. Likewise, other methods
of learning like Support Vector Machine (SVM) and Maha-
lanobis Distance [42], [24] can be used to detect anomaly in
Bitcoin graph. [23] works on training its model from already
existing clusters from chain analysis tool [6] and detects newer
clusters which are not yet identified using Gradient Boosting
Classifier.

Despite those aforementioned features are easy to retrieve,
they might fall short for cyberfighters who require high ac-
curacy in anomaly detection. Graph embedding is proven to
be an increasingly popular paradigm toward more accurate
feature extraction for graph vertices [13]. Mathematically, an
embedding for a graph G is a representation of G on a compact,
connected 2-manifold surface [7].

To the best of our knowledge, there exist three graph
embedding construction methods, i.e., matrix factorization,
random walk and Graph Convolutional Network (GCN) [21].
In particular, matrix factorization [28], [9], [45], [10], [39]

1It should be noted that this particular heuristic may not work for some
transactions like mixing.
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(a). Bitcoin bi-partite graph (b). Bitcoin address interaction graph
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(c). Graph Convolutional Network
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Fig. 1: Applying GCN [27] to Bitcoin graph, particularly, for vertex 5 in (b). In (c), A, D, H and W stand for the graph in (b),
degree of each vertex, the embedding of each vertex and the weight of the fully connected neural network. Lknown represent
the known label (such as criminal address) of a set of known vertices.

represents the graph in the form of an adjacency matrix and
use factorization to extract the embeddings of that graph.
When we can only partially observe a graph or if the graph
is too large, random walk can be used for generating the
embeddings. In particular, this option [34], [40], [22], [15], [41]
exploits a stochastic process which defines a path consisting
of successive space in the graph. Third, deep learning based
graph embedding computation is recently gaining popularity.
Briefly, GCN [27] proposes a graph defined neural network.
In particular, it defines a convolution operator on the graph
which iteratively aggregates the embeddings of neighbors for a
node which is scalable and more efficient. It was evident that
a randomly initiated 2-layer GCN is able to produce useful
features of nodes in a graph [27].

Figure 1 briefly explains how GCN works on a Bitcoin
transaction graph. For simplicity, we adopt the traditional
convention [18] to convert the Bitcoin graph as shown in
Figure 1(a) (where circle and rectangle represent address and
transaction vertices, respectively) into an undirected graph
as shown in the Figure 1(b). Note, graph learning can also
accommodate directed graphs. The essence of GCN falls into
two steps: First, it gathers the information of the first hop
neighbors to compute the embedding for the vertex of interest.
To involving more topological information, one can gather and
compute the embedding with multiple hops of neighbors, as
shown in Figure 1(c). Second, GCN exploits the labels of
known vertices to update the weight of neural network (often
known as back propagation). Figure 1(b) and 1(c) illustrate a
2-hop neighbor based embedding construction. In particular,
at first iteration, node 5 gathers and computes the embedding
based upon 5’s 1st-hop neighbors, i.e.,{1, 2, 4, 15}. To involve
more topological information, this example also considers the
2nd-hop of neighbors, i.e., {7, 10, 12, 13}.

Considering GCN is more efficient than matrix factorization
and random walk based approaches [21], as well as coming
with a more popular community support and ecosystem, we
choose the GCN based embedding construction for crytocur-
rency denonymization. However, the cryptocurrencies, such as,
Bitcoin graphs, do possess the following unique challenges that
ask for particular treatment.

1) Large and extremely skewed graph: The cryptocur-

rency graph consists of a large volume of vertices and
presents absurdly skewed degree distributions – often
more skewed than social networks. Without address
clustering [18] reports the number of vertices in Bitcoin
graph to be more than 720 million vertices with 1.6
billion edges. With the majority of the edges binds to
very few exchange center addresses, gaming addresses
and miner addresses, the graph is highly skewed from
degree ranging from 1 to 13 million of address nodes
on June 2018 [8]. Both the high volume of vertices and
skewed degree distribution add challenges for state-of-
the-art graph learning systems.

2) Dynamically increasing graph: The cryptocurrency trans-
action graph are increasing and append-only in nature.
This would likely cause the continuous increase in the
size of the graph demanding more computational and
memory resources. Also, one should be able to exploit
the temporal information to avoid repeated computations.

3) Semantic graph [49], [46]: A user might want to use
the cryptocurrency as a distributed storage or encode
smart contract in the transactions. These kind of activities
retrofit semantic to the cryptocurrencies and immediately
complicate the process of graph learning.

While the aforementioned hardships are challenging, there
also exist properties that are friendly to GCN:

1) Inactive/zero balance addresses: Many of the addresses
in Bitcoin are inactive. Identifying and removing those
addresses will help reduce the problem size. As a
consequence, GCN will experience reduced workload,
subsequently, faster embedding computations.

2) Publicly available address labels: Thanks to the pop-
ularity of cryptocurrencies, an array of websites [5],
[2], [1], [3] are hosting the real world identities of the
addresses. These labels could be used to facilitate faster
GCN learning and training.

In summary, graph learning is a promising tool for
deanonymizing cryptocurrencies but with mounting challenges
in the computing horizon. Toward societal benefits, future
cyber law enforcements and researchers shall invest in this
direction.
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